Parallel molecular evolution in an herbivore community

Ying Zhen, Matthew L. Aardema, Edgar M. Medina, Molly Schumer, Peter Andolfatto

Research output: Contribution to journalArticlepeer-review

202 Scopus citations

Abstract

Numerous insects have independently evolved the ability to feed on plants that produce toxic secondary compounds called cardenolides and can sequester these compounds for use in their defense. We surveyed the protein target for cardenolides, the alpha subunit of the sodium pump, Na+,K +-ATPase (ATPα), in 14 species that feed on cardenolide-producing plants and 15 outgroups spanning three insect orders. Despite the large number of potential targets for modulating cardenolide sensitivity, amino acid substitutions associated with host-plant specialization are highly clustered, with many parallel substitutions. Additionally, we document four independent duplications of ATPα with convergent tissue-specific expression patterns. We find that unique substitutions are disproportionately associated with recent duplications relative to parallel substitutions. Together, these findings support the hypothesis that adaptation tends to take evolutionary paths that minimize negative pleiotropy.

Original languageEnglish
Pages (from-to)1634-1637
Number of pages4
JournalScience
Volume337
Issue number6102
DOIs
StatePublished - 28 Sep 2012

Fingerprint

Dive into the research topics of 'Parallel molecular evolution in an herbivore community'. Together they form a unique fingerprint.

Cite this