TY - JOUR
T1 - Phosphorus fractionation and adsorption characteristics in drinking water reservoir inlet river sediments under human disturbance
AU - Fu, Zihao
AU - Hong, Zijin
AU - Wei, Junling
AU - Liao, Yukai
AU - You, Songlin
AU - Wang, Yifan
AU - Lv, Jianjing
AU - Feng, Huan
AU - Kolenčík, Marek
AU - Chang, Xuexiu
AU - Qian, Yu
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2022/9
Y1 - 2022/9
N2 - Purpose: Sediment phosphorus fractionation, adsorption kinetics, and adsorption isotherm characteristics were studied in two rivers, Muyang River and Lengshui River in China, emptying into a drinking water source reservoir, Songhua Reservoir. The relationship between phosphorus fractions and adsorption characteristics was further investigated to explore possible management options for maintaining river water quality. Methods: Sediment samples were collected from six and five sampling sites located along the Muyang and Lengshui Rivers, respectively. Sediment physical–chemical properties and phosphorus fractions were quantified. Adsorption characteristics were modeled with adsorption kinetics and adsorption isotherms. Results: The results from sedimentary sequential chemical extraction (SEDEX) method showed that organic phosphorus (Org-P) had the highest portion of total phosphorus in sediments, followed by detrital phosphorus and authigenic phosphorus (Auth-P), residual phosphorus, iron-bound phosphorus (Fe–P), aluminum-bound phosphorus (Al-P), and exchangeable phosphorus. Notably, the Lengshui River had a higher portion of Fe–P. The kinetics of phosphorus adsorption in sediments was simulated using a pseudo-second-order kinetic model. The results showed that sediment phosphorus adsorption in the upper reaches of the rivers was primarily dominated by single-layer adsorption, whereas that in downstream reaches gradually became irregular and complex deep adsorption. Adsorption isotherms could be well fitted using the modified Langmuir model and the Freundlich model, which indicated that the Lengshui River sediment had higher maximum phosphorus adsorption capacity and strength than Muyang River sediments. The EPC0 values of sediments in both rivers indicated that sediments acted as the source of phosphorus in surface water. Principal component analysis showed that (i) the portion of Fe/Al-P in sediments positively correlated with equilibrium adsorption capacity, rate, and strength; (ii) Auth-P in sediments could increase the speed and amount of physically adsorbed phosphorus in sediments; and (iii) Org-P positively impacted the maximum adsorption capacity of phosphorus in sediments. Conclusion: Sediment phosphorus fractions and sorption could be affected by human disturbance. At the same time, sediment phosphorus fraction features correlated with several P adsorption characteristics. The findings from this study provide useful guidance for water quality protection of the drinking water source reservoir.
AB - Purpose: Sediment phosphorus fractionation, adsorption kinetics, and adsorption isotherm characteristics were studied in two rivers, Muyang River and Lengshui River in China, emptying into a drinking water source reservoir, Songhua Reservoir. The relationship between phosphorus fractions and adsorption characteristics was further investigated to explore possible management options for maintaining river water quality. Methods: Sediment samples were collected from six and five sampling sites located along the Muyang and Lengshui Rivers, respectively. Sediment physical–chemical properties and phosphorus fractions were quantified. Adsorption characteristics were modeled with adsorption kinetics and adsorption isotherms. Results: The results from sedimentary sequential chemical extraction (SEDEX) method showed that organic phosphorus (Org-P) had the highest portion of total phosphorus in sediments, followed by detrital phosphorus and authigenic phosphorus (Auth-P), residual phosphorus, iron-bound phosphorus (Fe–P), aluminum-bound phosphorus (Al-P), and exchangeable phosphorus. Notably, the Lengshui River had a higher portion of Fe–P. The kinetics of phosphorus adsorption in sediments was simulated using a pseudo-second-order kinetic model. The results showed that sediment phosphorus adsorption in the upper reaches of the rivers was primarily dominated by single-layer adsorption, whereas that in downstream reaches gradually became irregular and complex deep adsorption. Adsorption isotherms could be well fitted using the modified Langmuir model and the Freundlich model, which indicated that the Lengshui River sediment had higher maximum phosphorus adsorption capacity and strength than Muyang River sediments. The EPC0 values of sediments in both rivers indicated that sediments acted as the source of phosphorus in surface water. Principal component analysis showed that (i) the portion of Fe/Al-P in sediments positively correlated with equilibrium adsorption capacity, rate, and strength; (ii) Auth-P in sediments could increase the speed and amount of physically adsorbed phosphorus in sediments; and (iii) Org-P positively impacted the maximum adsorption capacity of phosphorus in sediments. Conclusion: Sediment phosphorus fractions and sorption could be affected by human disturbance. At the same time, sediment phosphorus fraction features correlated with several P adsorption characteristics. The findings from this study provide useful guidance for water quality protection of the drinking water source reservoir.
KW - Adsorption kinetics
KW - Drinking water reservoir
KW - Isotherm
KW - Phosphorus
KW - Sediment
UR - http://www.scopus.com/inward/record.url?scp=85133270369&partnerID=8YFLogxK
U2 - 10.1007/s11368-022-03257-1
DO - 10.1007/s11368-022-03257-1
M3 - Article
AN - SCOPUS:85133270369
SN - 1439-0108
VL - 22
SP - 2530
EP - 2547
JO - Journal of Soils and Sediments
JF - Journal of Soils and Sediments
IS - 9
ER -