Polypeptide chain initiation in eukaryotes: reversibility of the ternary complex-forming reaction.

J. Siekierka, V. Manne, L. Mauser, S. Ochoa

Research output: Contribution to journalArticle

30 Citations (Scopus)

Abstract

In the last step of polypeptide chain initiation in eukaryotes, the interaction of the 40S preinitiation complex eIF-2.GTP.Met-tRNAi.40S [the complex between the 40S ribosomal subunit and the ternary complex containing equimolar amounts of eukaryotic initiation factor 2 (eIF-2), GTP, and eukaryotic initiator methionyl tRNA (Met-tRNAi)] with a 60S ribosomal subunit in the presence of mRNA, cap binding protein (with "capped" messengers), ATP, and the initiation factors eIF-3, eIF-4a, -4b, -4c, and eIF-5, results in the formation of an 80S initiation complex (Met-tRNAi.80S.mRNA) with concomitant hydrolysis of GTP and liberation of eIF-2 for recycling in subsequent initiation events. However, at physiological Mg2+ concentrations, GDP is known to have approximately equal to 100-fold greater affinity than GTP for eIF-2 and eIF-2 is believed to be released in the form of an eIF-2.GDP complex. Previously, we have shown that initiation factor SP (for eIF-2-stimulating protein) promotes the exchange of eIF-2-bound GDP for GTP and catalyzes ternary complex formation in the presence of Met-tRNAi. Binding of GDP by eIF-2 is indeed so tight that, as we now show, homogeneous preparations of eIF-2 contain upward of 0.5 mol of GDP/mol of eIF-2. We further show that, in the presence of Mg2+ and catalytic amounts of SP, ternary complex formation conforms to the overall reversible reaction eIF-2.GDP + GTP + Met-tRNAi in equilibrium eIF-2.GTP.Met-tRNAi + GDP.

Original languageEnglish
Pages (from-to)1232-1235
Number of pages4
JournalProceedings of the National Academy of Sciences of the United States of America
Volume80
Issue number5
DOIs
StatePublished - Mar 1983

Fingerprint

Eukaryotic Initiation Factor-2
Eukaryota
Peptides
Guanosine Triphosphate
RNA, Transfer, Met
Peptide Initiation Factors
Eukaryotic Large Ribosome Subunits
RNA Cap-Binding Proteins
Eukaryotic Small Ribosome Subunits
Recycling

Cite this

@article{bdfe96e077e14c24ac11b658c06815e2,
title = "Polypeptide chain initiation in eukaryotes: reversibility of the ternary complex-forming reaction.",
abstract = "In the last step of polypeptide chain initiation in eukaryotes, the interaction of the 40S preinitiation complex eIF-2.GTP.Met-tRNAi.40S [the complex between the 40S ribosomal subunit and the ternary complex containing equimolar amounts of eukaryotic initiation factor 2 (eIF-2), GTP, and eukaryotic initiator methionyl tRNA (Met-tRNAi)] with a 60S ribosomal subunit in the presence of mRNA, cap binding protein (with {"}capped{"} messengers), ATP, and the initiation factors eIF-3, eIF-4a, -4b, -4c, and eIF-5, results in the formation of an 80S initiation complex (Met-tRNAi.80S.mRNA) with concomitant hydrolysis of GTP and liberation of eIF-2 for recycling in subsequent initiation events. However, at physiological Mg2+ concentrations, GDP is known to have approximately equal to 100-fold greater affinity than GTP for eIF-2 and eIF-2 is believed to be released in the form of an eIF-2.GDP complex. Previously, we have shown that initiation factor SP (for eIF-2-stimulating protein) promotes the exchange of eIF-2-bound GDP for GTP and catalyzes ternary complex formation in the presence of Met-tRNAi. Binding of GDP by eIF-2 is indeed so tight that, as we now show, homogeneous preparations of eIF-2 contain upward of 0.5 mol of GDP/mol of eIF-2. We further show that, in the presence of Mg2+ and catalytic amounts of SP, ternary complex formation conforms to the overall reversible reaction eIF-2.GDP + GTP + Met-tRNAi in equilibrium eIF-2.GTP.Met-tRNAi + GDP.",
author = "J. Siekierka and V. Manne and L. Mauser and S. Ochoa",
year = "1983",
month = "3",
doi = "10.1073/pnas.80.5.1232",
language = "English",
volume = "80",
pages = "1232--1235",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "5",

}

Polypeptide chain initiation in eukaryotes : reversibility of the ternary complex-forming reaction. / Siekierka, J.; Manne, V.; Mauser, L.; Ochoa, S.

In: Proceedings of the National Academy of Sciences of the United States of America, Vol. 80, No. 5, 03.1983, p. 1232-1235.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Polypeptide chain initiation in eukaryotes

T2 - reversibility of the ternary complex-forming reaction.

AU - Siekierka, J.

AU - Manne, V.

AU - Mauser, L.

AU - Ochoa, S.

PY - 1983/3

Y1 - 1983/3

N2 - In the last step of polypeptide chain initiation in eukaryotes, the interaction of the 40S preinitiation complex eIF-2.GTP.Met-tRNAi.40S [the complex between the 40S ribosomal subunit and the ternary complex containing equimolar amounts of eukaryotic initiation factor 2 (eIF-2), GTP, and eukaryotic initiator methionyl tRNA (Met-tRNAi)] with a 60S ribosomal subunit in the presence of mRNA, cap binding protein (with "capped" messengers), ATP, and the initiation factors eIF-3, eIF-4a, -4b, -4c, and eIF-5, results in the formation of an 80S initiation complex (Met-tRNAi.80S.mRNA) with concomitant hydrolysis of GTP and liberation of eIF-2 for recycling in subsequent initiation events. However, at physiological Mg2+ concentrations, GDP is known to have approximately equal to 100-fold greater affinity than GTP for eIF-2 and eIF-2 is believed to be released in the form of an eIF-2.GDP complex. Previously, we have shown that initiation factor SP (for eIF-2-stimulating protein) promotes the exchange of eIF-2-bound GDP for GTP and catalyzes ternary complex formation in the presence of Met-tRNAi. Binding of GDP by eIF-2 is indeed so tight that, as we now show, homogeneous preparations of eIF-2 contain upward of 0.5 mol of GDP/mol of eIF-2. We further show that, in the presence of Mg2+ and catalytic amounts of SP, ternary complex formation conforms to the overall reversible reaction eIF-2.GDP + GTP + Met-tRNAi in equilibrium eIF-2.GTP.Met-tRNAi + GDP.

AB - In the last step of polypeptide chain initiation in eukaryotes, the interaction of the 40S preinitiation complex eIF-2.GTP.Met-tRNAi.40S [the complex between the 40S ribosomal subunit and the ternary complex containing equimolar amounts of eukaryotic initiation factor 2 (eIF-2), GTP, and eukaryotic initiator methionyl tRNA (Met-tRNAi)] with a 60S ribosomal subunit in the presence of mRNA, cap binding protein (with "capped" messengers), ATP, and the initiation factors eIF-3, eIF-4a, -4b, -4c, and eIF-5, results in the formation of an 80S initiation complex (Met-tRNAi.80S.mRNA) with concomitant hydrolysis of GTP and liberation of eIF-2 for recycling in subsequent initiation events. However, at physiological Mg2+ concentrations, GDP is known to have approximately equal to 100-fold greater affinity than GTP for eIF-2 and eIF-2 is believed to be released in the form of an eIF-2.GDP complex. Previously, we have shown that initiation factor SP (for eIF-2-stimulating protein) promotes the exchange of eIF-2-bound GDP for GTP and catalyzes ternary complex formation in the presence of Met-tRNAi. Binding of GDP by eIF-2 is indeed so tight that, as we now show, homogeneous preparations of eIF-2 contain upward of 0.5 mol of GDP/mol of eIF-2. We further show that, in the presence of Mg2+ and catalytic amounts of SP, ternary complex formation conforms to the overall reversible reaction eIF-2.GDP + GTP + Met-tRNAi in equilibrium eIF-2.GTP.Met-tRNAi + GDP.

UR - http://www.scopus.com/inward/record.url?scp=0020726936&partnerID=8YFLogxK

U2 - 10.1073/pnas.80.5.1232

DO - 10.1073/pnas.80.5.1232

M3 - Article

C2 - 6572381

AN - SCOPUS:0020726936

VL - 80

SP - 1232

EP - 1235

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 5

ER -