TY - GEN
T1 - Privacy-preserving outsourced collaborative frequent itemset mining in the cloud
AU - Samanthula, Bharath Kumar
PY - 2017/7/1
Y1 - 2017/7/1
N2 - Big Data management and analytics has revolutionized the way how organizations collect, store, process and retrieve, huge volumes of data. In order to fully leverage the potential of big data, it is often that organizations need to collaborate and analyze their combined data, and thus, improving the accuracy of results. However, due to government regulations and internal privacy policies, organizations cannot freely share their data with one another. Existing secure multiparty computation techniques along this direction are very expensive. In this paper, we develop a protocol that facilitates multiple users to outsource their encrypted databases as well as the frequent itemset mining task to a cloud environment in a collaborative and privacy-preserving manner. Our solution is built using the well-known apriori algorithm in order to boost the performance of frequent itemset mining in the cloud. Our comprehensive analysis has demonstrated that the proposed solution preserves the confidentiality of participating users. Additionally, our solution ensures that the entire frequent itemset mining task is performed on the cloud-side, thereby fully utilizing the cloud computing services to handle big data needs and incurring negligible cost on the end-users.
AB - Big Data management and analytics has revolutionized the way how organizations collect, store, process and retrieve, huge volumes of data. In order to fully leverage the potential of big data, it is often that organizations need to collaborate and analyze their combined data, and thus, improving the accuracy of results. However, due to government regulations and internal privacy policies, organizations cannot freely share their data with one another. Existing secure multiparty computation techniques along this direction are very expensive. In this paper, we develop a protocol that facilitates multiple users to outsource their encrypted databases as well as the frequent itemset mining task to a cloud environment in a collaborative and privacy-preserving manner. Our solution is built using the well-known apriori algorithm in order to boost the performance of frequent itemset mining in the cloud. Our comprehensive analysis has demonstrated that the proposed solution preserves the confidentiality of participating users. Additionally, our solution ensures that the entire frequent itemset mining task is performed on the cloud-side, thereby fully utilizing the cloud computing services to handle big data needs and incurring negligible cost on the end-users.
KW - cloud
KW - encryption
KW - frequent itemsets
KW - privacy
UR - http://www.scopus.com/inward/record.url?scp=85047780546&partnerID=8YFLogxK
U2 - 10.1109/BigData.2017.8258556
DO - 10.1109/BigData.2017.8258556
M3 - Conference contribution
T3 - Proceedings - 2017 IEEE International Conference on Big Data, Big Data 2017
SP - 4827
EP - 4829
BT - Proceedings - 2017 IEEE International Conference on Big Data, Big Data 2017
A2 - Nie, Jian-Yun
A2 - Obradovic, Zoran
A2 - Suzumura, Toyotaro
A2 - Ghosh, Rumi
A2 - Nambiar, Raghunath
A2 - Wang, Chonggang
A2 - Zang, Hui
A2 - Baeza-Yates, Ricardo
A2 - Baeza-Yates, Ricardo
A2 - Hu, Xiaohua
A2 - Kepner, Jeremy
A2 - Cuzzocrea, Alfredo
A2 - Tang, Jian
A2 - Toyoda, Masashi
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 5th IEEE International Conference on Big Data, Big Data 2017
Y2 - 11 December 2017 through 14 December 2017
ER -