QuenchML: A semantics-preserving markup language for knowledge representation in quenching

Aparna S. Varde, Mohammed Maniruzzaman, Richard D. Sisson

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


Knowledge representation (KR) is an important area in artificial intelligence (AI) and is often related to specific domains. The representation of knowledge in domain-specific contexts makes it desirable to capture semantics as domain experts would. This motivates the development of semantics-preserving standards for KR within the given domain. In addition to the storage and analysis of information using such standards, the effect of globalization today necessitates the publishing of information on the Web. Thus, it is advisable to use formats that make the information easily publishable and accessible while developing KR standards. In this article, we propose such a standard called Quenching Markup Language (QuenchML). This follows the syntax of the eXtensible Markup Language and captures the semantics of the quenching domain within the heat treating of materials. We describe the development of QuenchML, a multidisciplinary effort spanning the realms of AI, database management, and materials science, considering various aspects such as ontology, data modeling, and domain-specific constraints. We also explain the usefulness of QuenchML in semantics-preserving information retrieval and in text mining guided by domain knowledge. Furthermore, we outline the significance of this work in software tools within the field of AI.

Original languageEnglish
Pages (from-to)65-82
Number of pages18
JournalArtificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM
Issue number1
StatePublished - Feb 2013


  • Heat Treating of Materials
  • Information Retrieval
  • Keywords Domain Expertise
  • Semantic Web
  • Text Mining


Dive into the research topics of 'QuenchML: A semantics-preserving markup language for knowledge representation in quenching'. Together they form a unique fingerprint.

Cite this