Reconstructing Coastal Sediment Budgets From Beach- and Foredune-Ridge Morphology: A Coupled Field and Modeling Approach

Daniel J. Ciarletta, Justin L. Shawler, Christopher Tenebruso, Christopher J. Hein, Jorge Lorenzo-Trueba

Research output: Contribution to journalArticlepeer-review

22 Scopus citations


Preserved beach and foredune ridges may serve as proxies for coastal change, reflecting alterations in sea level, wave energy, or past sediment fluxes. In particular, time-varying shoreface sediment budgets have been inferred from the relative size of foredune ridges through application of radiocarbon and optically stimulated luminescence dating to these systems over the last decades. However, geochronological control requires extensive field investigation and analysis. Purely field-based studies might also overlook relationships between the mechanics of sediment delivery to the shoreface and foredune ridges, missing insights about sensitivity to changes in sediment budget. We therefore propose a simple geomorphic model of beach/foredune-ridge and swale morphology to quantify the magnitude of changes in cross-shore sediment budget, employing field measurements of ridge volume, ridge spacing, elevation, and shoreline progradation. Model behaviors are constrained by the partitioning of sediment fluxes to the shoreface and foredune ridge and can be used to reproduce several cross-shore patterns observed in nature. These include regularly spaced ridges (“washboards”), large singular ridges, and wide swales with poorly developed ridges. We evaluate our model against well-preserved ridge and swale systems at two sites along the Virginia Eastern Shore (USA): Fishing Point, for which historical records provide a detailed history of shoreline progradation and ridge growth, and Parramore Island, for which a relatively more complex morphology developed over a poorly constrained period of prehistoric growth. Our results suggest this new model could be used to infer the sensitivity of field sites across the globe to variations in sediment delivery.

Original languageEnglish
Pages (from-to)1398-1416
Number of pages19
JournalJournal of Geophysical Research: Earth Surface
Issue number6
StatePublished - Jun 2019


  • barrier island
  • beach ridge
  • coastal geomorphology
  • foredune
  • modeling
  • progradation


Dive into the research topics of 'Reconstructing Coastal Sediment Budgets From Beach- and Foredune-Ridge Morphology: A Coupled Field and Modeling Approach'. Together they form a unique fingerprint.

Cite this