TY - JOUR
T1 - Salt pollution reduces turbidity, dissolved organic matter, and cyanobacteria in experimental vernal pool communities
AU - Vigil, Jared P.
AU - Schuler, Matthew S.
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/6/25
Y1 - 2024/6/25
N2 - Anthropogenic activities such as the over-application of road deicers are causing an increase in the concentration of salts in historically fresh waters. Experimental and field investigations demonstrate that freshwater salinization disrupts ecosystem functions and services, causing the death of freshwater organisms and changes to nutrient conditions. Wetland habitats are one system negatively affected by salt pollution, including ephemeral wetlands (vernal pools) that fill with salt-polluted water after snowmelt. In urbanized areas, the degradation of these ecosystems could result in irreversible ecological damage including reduced water quality and a reduction in biodiversity. To investigate the effects of freshwater salinization on vernal pool communities, we exposed soils from vernal pools to water containing no salt (control), or four concentrations of three salts standardized by chloride concentration (50 mg Cl− L−1, 100 mg Cl− L−1, 200 mg Cl− L−1, and 400 mg Cl− L−1; magnesium chloride, calcium chloride, and sodium chloride). The results of this experiment suggest that emerging zooplankton communities in vernal pools are sensitive to low concentrations of salt pollution, and that alternative salts such as magnesium chloride and calcium chloride are more toxic than sodium chloride. We did not find positive or negative changes in the abundance of eukaryotic phytoplankton but did find negative effects of salt on cyanobacteria abundance, possibly due to corresponding reductions in turbidity which might be needed as a fixation site for cyanobacteria to form heterocysts. Finally, we found that salt pollution likely caused flocculation of Dissolved Organic Matter (DOM), resulting in reduced concentrations of DOM which could alter the buffering capacity of freshwater systems, light attenuation, and the populations of planktonic heterotrophs.
AB - Anthropogenic activities such as the over-application of road deicers are causing an increase in the concentration of salts in historically fresh waters. Experimental and field investigations demonstrate that freshwater salinization disrupts ecosystem functions and services, causing the death of freshwater organisms and changes to nutrient conditions. Wetland habitats are one system negatively affected by salt pollution, including ephemeral wetlands (vernal pools) that fill with salt-polluted water after snowmelt. In urbanized areas, the degradation of these ecosystems could result in irreversible ecological damage including reduced water quality and a reduction in biodiversity. To investigate the effects of freshwater salinization on vernal pool communities, we exposed soils from vernal pools to water containing no salt (control), or four concentrations of three salts standardized by chloride concentration (50 mg Cl− L−1, 100 mg Cl− L−1, 200 mg Cl− L−1, and 400 mg Cl− L−1; magnesium chloride, calcium chloride, and sodium chloride). The results of this experiment suggest that emerging zooplankton communities in vernal pools are sensitive to low concentrations of salt pollution, and that alternative salts such as magnesium chloride and calcium chloride are more toxic than sodium chloride. We did not find positive or negative changes in the abundance of eukaryotic phytoplankton but did find negative effects of salt on cyanobacteria abundance, possibly due to corresponding reductions in turbidity which might be needed as a fixation site for cyanobacteria to form heterocysts. Finally, we found that salt pollution likely caused flocculation of Dissolved Organic Matter (DOM), resulting in reduced concentrations of DOM which could alter the buffering capacity of freshwater systems, light attenuation, and the populations of planktonic heterotrophs.
KW - Cyanobacteria
KW - Dissolved organic matter
KW - Freshwater salinization
KW - Road salt
KW - Turbidity
KW - Vernal pool
KW - Zooplankton
UR - http://www.scopus.com/inward/record.url?scp=85192178899&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2024.172948
DO - 10.1016/j.scitotenv.2024.172948
M3 - Article
C2 - 38703853
AN - SCOPUS:85192178899
SN - 0048-9697
VL - 931
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 172948
ER -