TY - JOUR
T1 - Structure connectivity and substructure connectivity of bubble-sort star graph networks
AU - Zhang, Guozhen
AU - Wang, D.
N1 - Publisher Copyright:
© 2019 Elsevier Inc.
PY - 2019/12/15
Y1 - 2019/12/15
N2 - The bubble-sort star graph, denoted BSn, is an interconnection network model for multiprocessor systems, which has attracted considerable interest since its first proposal in 1996 [5]. In this paper, we study the problem of structure/substructure connectivity in bubble-sort star networks. Two basic but important structures, namely path Pi and cycle Ci, are studied. Let T be a connected subgraph of graph G. The T-structure connectivity κ(G; T) of G is the cardinality of a minimum set of subgraphs in G, whose deletion disconnects G and every element in the set is isomorphic to T. The T-substructure connectivity κs(G; T) of G is the cardinality of a minimum set of subgraphs in G, whose deletion disconnects G and every element in the set is isomorphic to a connected subgraph of T. Both T-structure connectivity and T-substructure connectivity are a generalization of the classic notion of node-connectivity. We will prove that for P2k+1, a path on odd nodes (resp. P2k, a path on even nodes), [Formula presented] for n ≥ 4 and k+1≤2n−3 (resp. [Formula presented] for n ≥ 5 and k≤2n−3). For a cycle on 2k nodes C2k (there are only cycles on even nodes in BSn), κ(BSn;C2k)=κs(BSn;C2k)=⌈[Formula presented] for n ≥ 5 and 2≤k≤n−1.
AB - The bubble-sort star graph, denoted BSn, is an interconnection network model for multiprocessor systems, which has attracted considerable interest since its first proposal in 1996 [5]. In this paper, we study the problem of structure/substructure connectivity in bubble-sort star networks. Two basic but important structures, namely path Pi and cycle Ci, are studied. Let T be a connected subgraph of graph G. The T-structure connectivity κ(G; T) of G is the cardinality of a minimum set of subgraphs in G, whose deletion disconnects G and every element in the set is isomorphic to T. The T-substructure connectivity κs(G; T) of G is the cardinality of a minimum set of subgraphs in G, whose deletion disconnects G and every element in the set is isomorphic to a connected subgraph of T. Both T-structure connectivity and T-substructure connectivity are a generalization of the classic notion of node-connectivity. We will prove that for P2k+1, a path on odd nodes (resp. P2k, a path on even nodes), [Formula presented] for n ≥ 4 and k+1≤2n−3 (resp. [Formula presented] for n ≥ 5 and k≤2n−3). For a cycle on 2k nodes C2k (there are only cycles on even nodes in BSn), κ(BSn;C2k)=κs(BSn;C2k)=⌈[Formula presented] for n ≥ 5 and 2≤k≤n−1.
KW - Bubble-sort star graphs
KW - Cycles
KW - Interconnection networks
KW - Paths
KW - Structure connectivity
KW - Substructure connectivity
UR - http://www.scopus.com/inward/record.url?scp=85070529963&partnerID=8YFLogxK
U2 - 10.1016/j.amc.2019.124632
DO - 10.1016/j.amc.2019.124632
M3 - Article
AN - SCOPUS:85070529963
SN - 0096-3003
VL - 363
JO - Applied Mathematics and Computation
JF - Applied Mathematics and Computation
M1 - 124632
ER -