Symbolic powers of radical ideals

Aihua Li, Irena Swanson

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

Hochster proved several criteria for the case when for a prime ideal P in a commutative Noetherian ring with identity, Pn = P(n) for all n. We generalize the criteria to radical ideals.

Original languageEnglish
Pages (from-to)997-1009
Number of pages13
JournalRocky Mountain Journal of Mathematics
Volume36
Issue number3
DOIs
StatePublished - 16 Oct 2006

Fingerprint

Noetherian Ring
Prime Ideal
Commutative Ring
Generalise

Keywords

  • Radical ideal
  • Reduced ring
  • Symbolic power
  • Test sequence

Cite this

Li, Aihua ; Swanson, Irena. / Symbolic powers of radical ideals. In: Rocky Mountain Journal of Mathematics. 2006 ; Vol. 36, No. 3. pp. 997-1009.
@article{bcd4f09cced2450e9866c89c576bd73d,
title = "Symbolic powers of radical ideals",
abstract = "Hochster proved several criteria for the case when for a prime ideal P in a commutative Noetherian ring with identity, Pn = P(n) for all n. We generalize the criteria to radical ideals.",
keywords = "Radical ideal, Reduced ring, Symbolic power, Test sequence",
author = "Aihua Li and Irena Swanson",
year = "2006",
month = "10",
day = "16",
doi = "10.1216/rmjm/1181069441",
language = "English",
volume = "36",
pages = "997--1009",
journal = "Rocky Mountain Journal of Mathematics",
issn = "0035-7596",
publisher = "Rocky Mountain Mathematics Consortium",
number = "3",

}

Symbolic powers of radical ideals. / Li, Aihua; Swanson, Irena.

In: Rocky Mountain Journal of Mathematics, Vol. 36, No. 3, 16.10.2006, p. 997-1009.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Symbolic powers of radical ideals

AU - Li, Aihua

AU - Swanson, Irena

PY - 2006/10/16

Y1 - 2006/10/16

N2 - Hochster proved several criteria for the case when for a prime ideal P in a commutative Noetherian ring with identity, Pn = P(n) for all n. We generalize the criteria to radical ideals.

AB - Hochster proved several criteria for the case when for a prime ideal P in a commutative Noetherian ring with identity, Pn = P(n) for all n. We generalize the criteria to radical ideals.

KW - Radical ideal

KW - Reduced ring

KW - Symbolic power

KW - Test sequence

UR - http://www.scopus.com/inward/record.url?scp=33749563898&partnerID=8YFLogxK

U2 - 10.1216/rmjm/1181069441

DO - 10.1216/rmjm/1181069441

M3 - Article

AN - SCOPUS:33749563898

VL - 36

SP - 997

EP - 1009

JO - Rocky Mountain Journal of Mathematics

JF - Rocky Mountain Journal of Mathematics

SN - 0035-7596

IS - 3

ER -