TY - JOUR
T1 - Synthesis of proteins by chloroplasts from iron-deficient Euglena gracilis
AU - Gaynor, John J.
PY - 1982/10/1
Y1 - 1982/10/1
N2 - Chloroplasts isolated from Euglena gracilis made iron deficient by growth on 0.5 μm iron show distinct qualitative and quantitative changes in their polypeptide composition in comparison with iron-sufficient (40 μm) chloroplasts. These changes were noted in the stromal, thylakoid, and envelope subfractions. Iron-deficient chloroplasts have a sedimentation behavior similar to that of iron-sufficient chloroplasts and also contain substantial amounts of ribulose-1,5-bisphosphate carboxylase. In addition, iron-deficient chloroplasts incorporate [3H]leucine into polypeptides at rates about one-third of those from control chloroplasts (40 μm Fe) on a per-microgram-chlorophyll basis. Incorporation of [3H]leucine into specific polypeptides, resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, shows relatively normal synthesis of the large subunit of ribulose-1,5-bisphosphate carboxylase and two of the three major chloroplast-derived polypeptides of the thylakoids. No incorporation was detected, however, into a polypeptide of ca. 33 kd which is synthesized by normal plastids. Iron-deficient chloroplasts also synthesize a stromal polypeptide of ca. 85 kd not seen in chloroplasts from normal cells. This evidence is consistent with a direct or indirect role for iron in the regulation of synthesis of specific proteins in the chloroplast.
AB - Chloroplasts isolated from Euglena gracilis made iron deficient by growth on 0.5 μm iron show distinct qualitative and quantitative changes in their polypeptide composition in comparison with iron-sufficient (40 μm) chloroplasts. These changes were noted in the stromal, thylakoid, and envelope subfractions. Iron-deficient chloroplasts have a sedimentation behavior similar to that of iron-sufficient chloroplasts and also contain substantial amounts of ribulose-1,5-bisphosphate carboxylase. In addition, iron-deficient chloroplasts incorporate [3H]leucine into polypeptides at rates about one-third of those from control chloroplasts (40 μm Fe) on a per-microgram-chlorophyll basis. Incorporation of [3H]leucine into specific polypeptides, resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, shows relatively normal synthesis of the large subunit of ribulose-1,5-bisphosphate carboxylase and two of the three major chloroplast-derived polypeptides of the thylakoids. No incorporation was detected, however, into a polypeptide of ca. 33 kd which is synthesized by normal plastids. Iron-deficient chloroplasts also synthesize a stromal polypeptide of ca. 85 kd not seen in chloroplasts from normal cells. This evidence is consistent with a direct or indirect role for iron in the regulation of synthesis of specific proteins in the chloroplast.
UR - http://www.scopus.com/inward/record.url?scp=0020196127&partnerID=8YFLogxK
U2 - 10.1016/0003-9861(82)90349-6
DO - 10.1016/0003-9861(82)90349-6
M3 - Article
C2 - 6816145
AN - SCOPUS:0020196127
SN - 0003-9861
VL - 218
SP - 309
EP - 319
JO - Archives of Biochemistry and Biophysics
JF - Archives of Biochemistry and Biophysics
IS - 1
ER -