The complete Ac/Ds transposon family of maize

Chunguang Du, Andrew Hoffman, Limei He, Jason Caronna, Hugo K. Dooner

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Background: The nonautonomous maize Ds transposons can only move in the presence of the autonomous element Ac. They comprise a heterogeneous group that share 11-bp terminal inverted repeats (TIRs) and some subterminal repeats, but vary greatly in size and composition. Three classes of Ds elements can cause mutations: Ds-del, internal deletions of the 4.6-kb Ac element; Ds1, ~400-bp in size and sharing little homology with Ac, and Ds2, variably-sized elements containing about 0.5 kb from the Ac termini and unrelated internal sequences. Here, we analyze the entire complement of Ds-related sequences in the genome of the inbred B73 and ask whether additional classes of Ds-like (Ds-l) elements, not uncovered genetically, are mobilized by Ac. We also compare the makeup of Ds-related sequences in two maize inbreds of different origin.Results: We found 903 elements with 11-bp Ac/Ds TIRs flanked by 8-bp target site duplications. Three resemble Ac, but carry small rearrangements. The others are much shorter, once extraneous insertions are removed. There are 331 Ds1 and 39 Ds2 elements, many of which are likely mobilized by Ac, and two novel classes of Ds-l elements. Ds-l3 elements lack subterminal homology with Ac, but carry transposase gene fragments, and represent decaying Ac elements. There are 44 such elements in B73. Ds-l4 elements share little similarity with Ac outside of the 11-bp TIR, have a modal length of ~1 kb, and carry filler DNA which, in a few cases, could be matched to gene fragments. Most Ds-related elements in B73 (486/903) fall in this class. None of the Ds-l elements tested responded to Ac. Only half of Ds insertion sites examined are shared between the inbreds B73 and W22.Conclusions: The majority of Ds-related sequences in maize correspond to Ds-l elements that do not transpose in the presence of Ac. Unlike actively transposing elements, many Ds-l elements are inserted in repetitive DNA, where they probably become methylated and begin to decay. The filler DNA present in most elements is occasionally captured from genes, a rare feature in transposons of the hAT superfamily to which Ds belongs. Maize inbreds of different origin are highly polymorphic in their DNA transposon makeup.

Original languageEnglish
Article number588
JournalBMC Genomics
Volume12
DOIs
StatePublished - 1 Dec 2011

Fingerprint

Zea mays
Terminal Repeat Sequences
DNA
Genes
Transposases
DNA Transposable Elements
Genome
Mutation

Cite this

Du, C., Hoffman, A., He, L., Caronna, J., & Dooner, H. K. (2011). The complete Ac/Ds transposon family of maize. BMC Genomics, 12, [588]. https://doi.org/10.1186/1471-2164-12-588
Du, Chunguang ; Hoffman, Andrew ; He, Limei ; Caronna, Jason ; Dooner, Hugo K. / The complete Ac/Ds transposon family of maize. In: BMC Genomics. 2011 ; Vol. 12.
@article{f45834af55204316bb3840f4f369a8b4,
title = "The complete Ac/Ds transposon family of maize",
abstract = "Background: The nonautonomous maize Ds transposons can only move in the presence of the autonomous element Ac. They comprise a heterogeneous group that share 11-bp terminal inverted repeats (TIRs) and some subterminal repeats, but vary greatly in size and composition. Three classes of Ds elements can cause mutations: Ds-del, internal deletions of the 4.6-kb Ac element; Ds1, ~400-bp in size and sharing little homology with Ac, and Ds2, variably-sized elements containing about 0.5 kb from the Ac termini and unrelated internal sequences. Here, we analyze the entire complement of Ds-related sequences in the genome of the inbred B73 and ask whether additional classes of Ds-like (Ds-l) elements, not uncovered genetically, are mobilized by Ac. We also compare the makeup of Ds-related sequences in two maize inbreds of different origin.Results: We found 903 elements with 11-bp Ac/Ds TIRs flanked by 8-bp target site duplications. Three resemble Ac, but carry small rearrangements. The others are much shorter, once extraneous insertions are removed. There are 331 Ds1 and 39 Ds2 elements, many of which are likely mobilized by Ac, and two novel classes of Ds-l elements. Ds-l3 elements lack subterminal homology with Ac, but carry transposase gene fragments, and represent decaying Ac elements. There are 44 such elements in B73. Ds-l4 elements share little similarity with Ac outside of the 11-bp TIR, have a modal length of ~1 kb, and carry filler DNA which, in a few cases, could be matched to gene fragments. Most Ds-related elements in B73 (486/903) fall in this class. None of the Ds-l elements tested responded to Ac. Only half of Ds insertion sites examined are shared between the inbreds B73 and W22.Conclusions: The majority of Ds-related sequences in maize correspond to Ds-l elements that do not transpose in the presence of Ac. Unlike actively transposing elements, many Ds-l elements are inserted in repetitive DNA, where they probably become methylated and begin to decay. The filler DNA present in most elements is occasionally captured from genes, a rare feature in transposons of the hAT superfamily to which Ds belongs. Maize inbreds of different origin are highly polymorphic in their DNA transposon makeup.",
author = "Chunguang Du and Andrew Hoffman and Limei He and Jason Caronna and Dooner, {Hugo K.}",
year = "2011",
month = "12",
day = "1",
doi = "10.1186/1471-2164-12-588",
language = "English",
volume = "12",
journal = "BMC Genomics",
issn = "1471-2164",
publisher = "BioMed Central Ltd.",

}

Du, C, Hoffman, A, He, L, Caronna, J & Dooner, HK 2011, 'The complete Ac/Ds transposon family of maize', BMC Genomics, vol. 12, 588. https://doi.org/10.1186/1471-2164-12-588

The complete Ac/Ds transposon family of maize. / Du, Chunguang; Hoffman, Andrew; He, Limei; Caronna, Jason; Dooner, Hugo K.

In: BMC Genomics, Vol. 12, 588, 01.12.2011.

Research output: Contribution to journalArticle

TY - JOUR

T1 - The complete Ac/Ds transposon family of maize

AU - Du, Chunguang

AU - Hoffman, Andrew

AU - He, Limei

AU - Caronna, Jason

AU - Dooner, Hugo K.

PY - 2011/12/1

Y1 - 2011/12/1

N2 - Background: The nonautonomous maize Ds transposons can only move in the presence of the autonomous element Ac. They comprise a heterogeneous group that share 11-bp terminal inverted repeats (TIRs) and some subterminal repeats, but vary greatly in size and composition. Three classes of Ds elements can cause mutations: Ds-del, internal deletions of the 4.6-kb Ac element; Ds1, ~400-bp in size and sharing little homology with Ac, and Ds2, variably-sized elements containing about 0.5 kb from the Ac termini and unrelated internal sequences. Here, we analyze the entire complement of Ds-related sequences in the genome of the inbred B73 and ask whether additional classes of Ds-like (Ds-l) elements, not uncovered genetically, are mobilized by Ac. We also compare the makeup of Ds-related sequences in two maize inbreds of different origin.Results: We found 903 elements with 11-bp Ac/Ds TIRs flanked by 8-bp target site duplications. Three resemble Ac, but carry small rearrangements. The others are much shorter, once extraneous insertions are removed. There are 331 Ds1 and 39 Ds2 elements, many of which are likely mobilized by Ac, and two novel classes of Ds-l elements. Ds-l3 elements lack subterminal homology with Ac, but carry transposase gene fragments, and represent decaying Ac elements. There are 44 such elements in B73. Ds-l4 elements share little similarity with Ac outside of the 11-bp TIR, have a modal length of ~1 kb, and carry filler DNA which, in a few cases, could be matched to gene fragments. Most Ds-related elements in B73 (486/903) fall in this class. None of the Ds-l elements tested responded to Ac. Only half of Ds insertion sites examined are shared between the inbreds B73 and W22.Conclusions: The majority of Ds-related sequences in maize correspond to Ds-l elements that do not transpose in the presence of Ac. Unlike actively transposing elements, many Ds-l elements are inserted in repetitive DNA, where they probably become methylated and begin to decay. The filler DNA present in most elements is occasionally captured from genes, a rare feature in transposons of the hAT superfamily to which Ds belongs. Maize inbreds of different origin are highly polymorphic in their DNA transposon makeup.

AB - Background: The nonautonomous maize Ds transposons can only move in the presence of the autonomous element Ac. They comprise a heterogeneous group that share 11-bp terminal inverted repeats (TIRs) and some subterminal repeats, but vary greatly in size and composition. Three classes of Ds elements can cause mutations: Ds-del, internal deletions of the 4.6-kb Ac element; Ds1, ~400-bp in size and sharing little homology with Ac, and Ds2, variably-sized elements containing about 0.5 kb from the Ac termini and unrelated internal sequences. Here, we analyze the entire complement of Ds-related sequences in the genome of the inbred B73 and ask whether additional classes of Ds-like (Ds-l) elements, not uncovered genetically, are mobilized by Ac. We also compare the makeup of Ds-related sequences in two maize inbreds of different origin.Results: We found 903 elements with 11-bp Ac/Ds TIRs flanked by 8-bp target site duplications. Three resemble Ac, but carry small rearrangements. The others are much shorter, once extraneous insertions are removed. There are 331 Ds1 and 39 Ds2 elements, many of which are likely mobilized by Ac, and two novel classes of Ds-l elements. Ds-l3 elements lack subterminal homology with Ac, but carry transposase gene fragments, and represent decaying Ac elements. There are 44 such elements in B73. Ds-l4 elements share little similarity with Ac outside of the 11-bp TIR, have a modal length of ~1 kb, and carry filler DNA which, in a few cases, could be matched to gene fragments. Most Ds-related elements in B73 (486/903) fall in this class. None of the Ds-l elements tested responded to Ac. Only half of Ds insertion sites examined are shared between the inbreds B73 and W22.Conclusions: The majority of Ds-related sequences in maize correspond to Ds-l elements that do not transpose in the presence of Ac. Unlike actively transposing elements, many Ds-l elements are inserted in repetitive DNA, where they probably become methylated and begin to decay. The filler DNA present in most elements is occasionally captured from genes, a rare feature in transposons of the hAT superfamily to which Ds belongs. Maize inbreds of different origin are highly polymorphic in their DNA transposon makeup.

UR - http://www.scopus.com/inward/record.url?scp=82355160905&partnerID=8YFLogxK

U2 - 10.1186/1471-2164-12-588

DO - 10.1186/1471-2164-12-588

M3 - Article

C2 - 22132901

AN - SCOPUS:82355160905

VL - 12

JO - BMC Genomics

JF - BMC Genomics

SN - 1471-2164

M1 - 588

ER -