Abstract
In this paper, a soft computing method, a probability theory, and a graph theoretic approach are utilized to describe this phenomenon. Uncertain random spectra, namely, natural tenacity, are established in this paper for assessing the survivability of MWSNs. We propose an elaborate mathematical formulation that relates the survivability to the natural tenacity. In addition, then the probability of link connectivity is proposed in order to connect the natural tenacity to the connectivity of the network, which reflects the most important indicators of network survivability. The natural tenacity of MWSNs is explored by both analytical and numerical ways. Moreover, we also compare it with other survivability measures. Under the smooth Gauss–semi-Markov mobility model, the effectiveness of the measure is verified through numerical analysis. The result indicates that the natural tenacity has a strong analytical ability to measure the survivability of MWSNs objectively.
Original language | English |
---|---|
Pages (from-to) | 2619-2629 |
Number of pages | 11 |
Journal | Soft Computing |
Volume | 21 |
Issue number | 10 |
DOIs | |
State | Published - 1 May 2017 |
Keywords
- Natural tenacity
- Probability theory
- Semi-Markov process
- Spectra
- Uncertainty theory