Using Neural Response Telemetry to Monitor Physiological Responses to Acoustic Stimulation in Hybrid Cochlear Implant Users

Paul J. Abbas, Viral D. Tejani, Rachel Scheperle, Carolyn J. Brown

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Objective: This report describes the results of a series of experiments where we use the neural response telemetry (NRT) system of the Nucleus cochlear implant (CI) to measure the response of the peripheral auditory system to acoustic stimulation in Nucleus Hybrid CI users. The objectives of this study were to determine whether they could separate responses from hair cells and neurons and to evaluate the stability of these measures over time. Design: Forty-four CI users participated. They all had residual acoustic hearing and used a Nucleus Hybrid S8, S12, or L24 CI or the standard lateral wall CI422 implant. The NRT system of the CI was used to trigger an acoustic stimulus (500-Hz tone burst or click), which was presented at a low stimulation rate (10, 15, or 50 per second) to the implanted ear via an insert earphone and to record the cochlear microphonic, the auditory nerve neurophonic and the compound action potential (CAP) from an apical intracochlear electrode. To record acoustically evoked responses, a longer time window than is available with the commercial NRT software is required. This limitation was circumvented by making multiple recordings for each stimulus using different time delays between the onset of stimulation and the onset of averaging. These recordings were then concatenated off-line. Matched recordings elicited using positive and negative polarity stimuli were added off-line to emphasize neural potentials (SUM) and subtracted off-line to emphasize potentials primarily generated by cochlear hair cells (DIF). These assumptions regarding the origin of the SUM and DIF components were tested by comparing the magnitude of these derived responses recorded using various stimulation rates. Magnitudes of the SUM and DIF components were compared with each other and with behavioral thresholds. Results: SUM and DIF components were identified for most subjects, consistent with both hair cell and neural responses to acoustic stimulation. For a subset of the study participants, the DIF components grew as stimulus level was increased, but little or no SUM components were identified. Latency of the CAPs in response to click stimuli was long relative to reports in the literature of recordings obtained using extracochlear electrodes. This difference in response latency and general morphology of the CAPs recorded was likely due to differences across subjects in hearing loss configuration. The use of high stimulation rates tended to decrease SUM and CAP components more than DIF components. We suggest this effect reflects neural adaptation. In some individuals, repeated measures were made over intervals as long as 9 months. Changes over time in DIF, SUM, and CAP thresholds mirrored changes in audiometric threshold for the subjects who experienced loss of acoustic hearing in the implanted ear. Conclusions: The Nucleus NRT software can be used to record peripheral responses to acoustic stimulation at threshold and suprathreshold levels, providing a window into the status of the auditory hair cells and the primary afferent nerve fibers. These acoustically evoked responses are sensitive to changes in hearing status and consequently could be useful in characterizing the specific pathophysiology of the hearing loss experienced by this population of CI users.

Original languageEnglish
Pages (from-to)409-425
Number of pages17
JournalEar and Hearing
Volume38
Issue number4
DOIs
StatePublished - 1 Jan 2017

Fingerprint

Acoustic Stimulation
Telemetry
Cochlear Implants
Auditory Hair Cells
Hearing Loss
Acoustics
Action Potentials
Hearing
Ear
Electrodes
Software
Cochlear Nerve
Cochlea
Nerve Fibers
Reaction Time
Neurons
Population

Keywords

  • Auditory nerve neurophonic
  • Cochlear microphonic
  • Compound action potential
  • Hybrid cochlear implant
  • Neural response telemetry

Cite this

Abbas, Paul J. ; Tejani, Viral D. ; Scheperle, Rachel ; Brown, Carolyn J. / Using Neural Response Telemetry to Monitor Physiological Responses to Acoustic Stimulation in Hybrid Cochlear Implant Users. In: Ear and Hearing. 2017 ; Vol. 38, No. 4. pp. 409-425.
@article{5da78738b12b44fdb510b49ac33ab367,
title = "Using Neural Response Telemetry to Monitor Physiological Responses to Acoustic Stimulation in Hybrid Cochlear Implant Users",
abstract = "Objective: This report describes the results of a series of experiments where we use the neural response telemetry (NRT) system of the Nucleus cochlear implant (CI) to measure the response of the peripheral auditory system to acoustic stimulation in Nucleus Hybrid CI users. The objectives of this study were to determine whether they could separate responses from hair cells and neurons and to evaluate the stability of these measures over time. Design: Forty-four CI users participated. They all had residual acoustic hearing and used a Nucleus Hybrid S8, S12, or L24 CI or the standard lateral wall CI422 implant. The NRT system of the CI was used to trigger an acoustic stimulus (500-Hz tone burst or click), which was presented at a low stimulation rate (10, 15, or 50 per second) to the implanted ear via an insert earphone and to record the cochlear microphonic, the auditory nerve neurophonic and the compound action potential (CAP) from an apical intracochlear electrode. To record acoustically evoked responses, a longer time window than is available with the commercial NRT software is required. This limitation was circumvented by making multiple recordings for each stimulus using different time delays between the onset of stimulation and the onset of averaging. These recordings were then concatenated off-line. Matched recordings elicited using positive and negative polarity stimuli were added off-line to emphasize neural potentials (SUM) and subtracted off-line to emphasize potentials primarily generated by cochlear hair cells (DIF). These assumptions regarding the origin of the SUM and DIF components were tested by comparing the magnitude of these derived responses recorded using various stimulation rates. Magnitudes of the SUM and DIF components were compared with each other and with behavioral thresholds. Results: SUM and DIF components were identified for most subjects, consistent with both hair cell and neural responses to acoustic stimulation. For a subset of the study participants, the DIF components grew as stimulus level was increased, but little or no SUM components were identified. Latency of the CAPs in response to click stimuli was long relative to reports in the literature of recordings obtained using extracochlear electrodes. This difference in response latency and general morphology of the CAPs recorded was likely due to differences across subjects in hearing loss configuration. The use of high stimulation rates tended to decrease SUM and CAP components more than DIF components. We suggest this effect reflects neural adaptation. In some individuals, repeated measures were made over intervals as long as 9 months. Changes over time in DIF, SUM, and CAP thresholds mirrored changes in audiometric threshold for the subjects who experienced loss of acoustic hearing in the implanted ear. Conclusions: The Nucleus NRT software can be used to record peripheral responses to acoustic stimulation at threshold and suprathreshold levels, providing a window into the status of the auditory hair cells and the primary afferent nerve fibers. These acoustically evoked responses are sensitive to changes in hearing status and consequently could be useful in characterizing the specific pathophysiology of the hearing loss experienced by this population of CI users.",
keywords = "Auditory nerve neurophonic, Cochlear microphonic, Compound action potential, Hybrid cochlear implant, Neural response telemetry",
author = "Abbas, {Paul J.} and Tejani, {Viral D.} and Rachel Scheperle and Brown, {Carolyn J.}",
year = "2017",
month = "1",
day = "1",
doi = "10.1097/AUD.0000000000000400",
language = "English",
volume = "38",
pages = "409--425",
journal = "Ear and Hearing",
issn = "0196-0202",
publisher = "Lippincott Williams and Wilkins Ltd.",
number = "4",

}

Using Neural Response Telemetry to Monitor Physiological Responses to Acoustic Stimulation in Hybrid Cochlear Implant Users. / Abbas, Paul J.; Tejani, Viral D.; Scheperle, Rachel; Brown, Carolyn J.

In: Ear and Hearing, Vol. 38, No. 4, 01.01.2017, p. 409-425.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Using Neural Response Telemetry to Monitor Physiological Responses to Acoustic Stimulation in Hybrid Cochlear Implant Users

AU - Abbas, Paul J.

AU - Tejani, Viral D.

AU - Scheperle, Rachel

AU - Brown, Carolyn J.

PY - 2017/1/1

Y1 - 2017/1/1

N2 - Objective: This report describes the results of a series of experiments where we use the neural response telemetry (NRT) system of the Nucleus cochlear implant (CI) to measure the response of the peripheral auditory system to acoustic stimulation in Nucleus Hybrid CI users. The objectives of this study were to determine whether they could separate responses from hair cells and neurons and to evaluate the stability of these measures over time. Design: Forty-four CI users participated. They all had residual acoustic hearing and used a Nucleus Hybrid S8, S12, or L24 CI or the standard lateral wall CI422 implant. The NRT system of the CI was used to trigger an acoustic stimulus (500-Hz tone burst or click), which was presented at a low stimulation rate (10, 15, or 50 per second) to the implanted ear via an insert earphone and to record the cochlear microphonic, the auditory nerve neurophonic and the compound action potential (CAP) from an apical intracochlear electrode. To record acoustically evoked responses, a longer time window than is available with the commercial NRT software is required. This limitation was circumvented by making multiple recordings for each stimulus using different time delays between the onset of stimulation and the onset of averaging. These recordings were then concatenated off-line. Matched recordings elicited using positive and negative polarity stimuli were added off-line to emphasize neural potentials (SUM) and subtracted off-line to emphasize potentials primarily generated by cochlear hair cells (DIF). These assumptions regarding the origin of the SUM and DIF components were tested by comparing the magnitude of these derived responses recorded using various stimulation rates. Magnitudes of the SUM and DIF components were compared with each other and with behavioral thresholds. Results: SUM and DIF components were identified for most subjects, consistent with both hair cell and neural responses to acoustic stimulation. For a subset of the study participants, the DIF components grew as stimulus level was increased, but little or no SUM components were identified. Latency of the CAPs in response to click stimuli was long relative to reports in the literature of recordings obtained using extracochlear electrodes. This difference in response latency and general morphology of the CAPs recorded was likely due to differences across subjects in hearing loss configuration. The use of high stimulation rates tended to decrease SUM and CAP components more than DIF components. We suggest this effect reflects neural adaptation. In some individuals, repeated measures were made over intervals as long as 9 months. Changes over time in DIF, SUM, and CAP thresholds mirrored changes in audiometric threshold for the subjects who experienced loss of acoustic hearing in the implanted ear. Conclusions: The Nucleus NRT software can be used to record peripheral responses to acoustic stimulation at threshold and suprathreshold levels, providing a window into the status of the auditory hair cells and the primary afferent nerve fibers. These acoustically evoked responses are sensitive to changes in hearing status and consequently could be useful in characterizing the specific pathophysiology of the hearing loss experienced by this population of CI users.

AB - Objective: This report describes the results of a series of experiments where we use the neural response telemetry (NRT) system of the Nucleus cochlear implant (CI) to measure the response of the peripheral auditory system to acoustic stimulation in Nucleus Hybrid CI users. The objectives of this study were to determine whether they could separate responses from hair cells and neurons and to evaluate the stability of these measures over time. Design: Forty-four CI users participated. They all had residual acoustic hearing and used a Nucleus Hybrid S8, S12, or L24 CI or the standard lateral wall CI422 implant. The NRT system of the CI was used to trigger an acoustic stimulus (500-Hz tone burst or click), which was presented at a low stimulation rate (10, 15, or 50 per second) to the implanted ear via an insert earphone and to record the cochlear microphonic, the auditory nerve neurophonic and the compound action potential (CAP) from an apical intracochlear electrode. To record acoustically evoked responses, a longer time window than is available with the commercial NRT software is required. This limitation was circumvented by making multiple recordings for each stimulus using different time delays between the onset of stimulation and the onset of averaging. These recordings were then concatenated off-line. Matched recordings elicited using positive and negative polarity stimuli were added off-line to emphasize neural potentials (SUM) and subtracted off-line to emphasize potentials primarily generated by cochlear hair cells (DIF). These assumptions regarding the origin of the SUM and DIF components were tested by comparing the magnitude of these derived responses recorded using various stimulation rates. Magnitudes of the SUM and DIF components were compared with each other and with behavioral thresholds. Results: SUM and DIF components were identified for most subjects, consistent with both hair cell and neural responses to acoustic stimulation. For a subset of the study participants, the DIF components grew as stimulus level was increased, but little or no SUM components were identified. Latency of the CAPs in response to click stimuli was long relative to reports in the literature of recordings obtained using extracochlear electrodes. This difference in response latency and general morphology of the CAPs recorded was likely due to differences across subjects in hearing loss configuration. The use of high stimulation rates tended to decrease SUM and CAP components more than DIF components. We suggest this effect reflects neural adaptation. In some individuals, repeated measures were made over intervals as long as 9 months. Changes over time in DIF, SUM, and CAP thresholds mirrored changes in audiometric threshold for the subjects who experienced loss of acoustic hearing in the implanted ear. Conclusions: The Nucleus NRT software can be used to record peripheral responses to acoustic stimulation at threshold and suprathreshold levels, providing a window into the status of the auditory hair cells and the primary afferent nerve fibers. These acoustically evoked responses are sensitive to changes in hearing status and consequently could be useful in characterizing the specific pathophysiology of the hearing loss experienced by this population of CI users.

KW - Auditory nerve neurophonic

KW - Cochlear microphonic

KW - Compound action potential

KW - Hybrid cochlear implant

KW - Neural response telemetry

UR - http://www.scopus.com/inward/record.url?scp=85010876661&partnerID=8YFLogxK

U2 - 10.1097/AUD.0000000000000400

DO - 10.1097/AUD.0000000000000400

M3 - Article

C2 - 28085738

AN - SCOPUS:85010876661

VL - 38

SP - 409

EP - 425

JO - Ear and Hearing

JF - Ear and Hearing

SN - 0196-0202

IS - 4

ER -