TY - JOUR
T1 - Vortioxetine improves context discrimination in mice through a neurogenesis independent mechanism
AU - Felice, Daniela
AU - Guilloux, Jean Philippe
AU - Pehrson, Alan
AU - Li, Yan
AU - Mendez-David, Indira
AU - Gardier, Alain M.
AU - Sanchez, Connie
AU - David, Denis J.
N1 - Publisher Copyright:
© 2018 Felice, Guilloux, Pehrson, Li, Mendez-David, Gardier, Sanchez and David.
PY - 2018/3/12
Y1 - 2018/3/12
N2 - Major Depressive Disorders (MDD) patients may exhibit cognitive deficits and it is currently unclear to which degree treatment with antidepressants may affect cognitive function. Preclinical and clinical observations showed that vortioxetine (VORT, an antidepressant with multimodal activity), presents beneficial effects on aspects of cognitive function. In addition, VORT treatment increases adult hippocampal neurogenesis (AHN) in rodents, a candidate mechanism for antidepressant activity. Pattern separation (PS) is the ability to discriminate between two similar contexts/events generating two distinct and non-overlapping representations. Impaired PS may lead to overgeneralization and anxiety disorders. If PS impairments were described in depressed patients, the consequences of antidepressant treatment on context discrimination (CD) are still in its infancy. We hypothesized that VORT-increased AHN may improve CD. Thus, in an attempt to elucidate the molecular mechanism underpinning VORT treatment effects on CD, a rodent model of PS, the role of AHN and stress-induced c-Fos activation was evaluated in the adult mouse hippocampus. Chronic treatment with VORT (1.8 g/kg of food weight; corresponding to a daily dose of 10 mg/kg, 3 weeks) improved CD in mice. Interestingly, chronic treatment with VORT reversed ablation of AHN-induced delay in CD and freezing behavior. VORT treatment decreased stress-induced c-Fos activation in the dorsal but not ventral dentate gyrus. VORT treatment did not affect c-Fos activity in the hippocampus of mice with ablated neurogenesis. This study highlights a role of VORT in CD, which may be independent from AHN and hippocampal c-Fos activation. Further studies elucidating the mechanisms underlying VORT's effects in CD could contribute to future strategies for alleviating the disease burden for individuals suffering from depression and/or anxiety disorders.
AB - Major Depressive Disorders (MDD) patients may exhibit cognitive deficits and it is currently unclear to which degree treatment with antidepressants may affect cognitive function. Preclinical and clinical observations showed that vortioxetine (VORT, an antidepressant with multimodal activity), presents beneficial effects on aspects of cognitive function. In addition, VORT treatment increases adult hippocampal neurogenesis (AHN) in rodents, a candidate mechanism for antidepressant activity. Pattern separation (PS) is the ability to discriminate between two similar contexts/events generating two distinct and non-overlapping representations. Impaired PS may lead to overgeneralization and anxiety disorders. If PS impairments were described in depressed patients, the consequences of antidepressant treatment on context discrimination (CD) are still in its infancy. We hypothesized that VORT-increased AHN may improve CD. Thus, in an attempt to elucidate the molecular mechanism underpinning VORT treatment effects on CD, a rodent model of PS, the role of AHN and stress-induced c-Fos activation was evaluated in the adult mouse hippocampus. Chronic treatment with VORT (1.8 g/kg of food weight; corresponding to a daily dose of 10 mg/kg, 3 weeks) improved CD in mice. Interestingly, chronic treatment with VORT reversed ablation of AHN-induced delay in CD and freezing behavior. VORT treatment decreased stress-induced c-Fos activation in the dorsal but not ventral dentate gyrus. VORT treatment did not affect c-Fos activity in the hippocampus of mice with ablated neurogenesis. This study highlights a role of VORT in CD, which may be independent from AHN and hippocampal c-Fos activation. Further studies elucidating the mechanisms underlying VORT's effects in CD could contribute to future strategies for alleviating the disease burden for individuals suffering from depression and/or anxiety disorders.
KW - C-Fos
KW - Context discrimination
KW - Mice
KW - Neurogenesis
KW - Vortioxetine
UR - http://www.scopus.com/inward/record.url?scp=85043475007&partnerID=8YFLogxK
U2 - 10.3389/fphar.2018.00204
DO - 10.3389/fphar.2018.00204
M3 - Article
AN - SCOPUS:85043475007
SN - 1663-9812
VL - 9
JO - Frontiers in Pharmacology
JF - Frontiers in Pharmacology
IS - MAR
M1 - 204
ER -